Complex Copper(II) Fluorides

IV. Crystal Structure of $\mathrm{Ba}_{6} \mathrm{Cu}_{11} \mathrm{~F}_{34}$: First Evidence of Trinuclear Edge-Sharing Units and Defective $\mathrm{NaCl}-$ Type Blocks in Crystal Chemistry of Fluorides ${ }^{1}$

J. RENAUDIN, J. PANNETIER,* A. DE KOZAK, \dagger M. SAMOUËL, \dagger and G. FEREY ${ }^{2}$
Laboratoire des Fluorures et Oxyfluorures Ioniques, UA CNRS 449, Faculté des Sciences, Route de Laval, 72017 Le Mans Cédex, France, *I.L.L., 156X, Avenue des martyrs, 38042 Grenoble Cédex, France, and \dagger Laboratoire de Chimie Minérale, ER 9 CNRS, Université P. et M. Curie, Tour 54, 4 Place Jussieu, 75230 Paris Cédex 05, France

Received May 2, 1985; in revised form August 5, 1985

Abstract

Single crystals of $\mathrm{Ba}_{6} \mathrm{Cu}_{11} \mathrm{~F}_{34}$ were isolated from a melt corresponding to the composition $25 \mathrm{BaF}_{2}-75$ CuF_{2}. They are triclinic: $P \overline{1}, a=7.490(1) \AA, b=10.031(2) \AA, c=10.271(3) \AA, \alpha=82.98(2)^{\circ}, \beta=$ $73.88(2)^{\circ}, \gamma=70.42(2)^{\circ}, Z=1$. The structure was determined from 3604 independent reflections using the program SHELX ($R=0.054, R_{w}=0.052$). The three-dimensional network is built from units of three edge-sharing octahedra connected by complex groups of octahedra. All the copper octahedra are elongated and the barium ions exhibit 11- or 12 -fold coordination. The structural relations to $\mathrm{Ba}_{6} \mathrm{Zn}_{7} \mathrm{~F}_{26}$ and $\mathrm{Ba}_{2} \mathrm{Ni}_{3} \mathrm{~F}_{10}$ are discussed. © 1986 Academic Press, Inc.

Introduction

In the binary systems $\mathrm{BaF}_{2}-M \mathrm{~F}_{2}$ with M $=\mathrm{Co}, \mathrm{Ni}, \mathrm{Cu}, \mathrm{Zn}$ (4), numerous compounds are formed for a molar ratio $r=M / \mathrm{Ba}>1$: e.g., $\mathrm{Ba}_{6} M_{7} \mathrm{~F}_{26}$ with $M=\mathrm{Cu}, \mathrm{Zn} ; \mathrm{Ba}_{2} \mathrm{M}_{3} \mathrm{~F}_{10}$ with $M=\mathrm{Co}, \mathrm{Ni}, \mathrm{Zn}$ (5,7); and $\mathrm{Ba}_{2} M_{7} \mathrm{~F}_{18}$ with $M=\mathrm{Ni}, \mathrm{Cu}, \mathrm{Zn}$. From what is presently known, it may be assumed that all these compounds could belong to a series of general formula: $\mathrm{Ba}_{6} M_{n} \mathrm{~F}_{12+2 n}$ with n odd. After the structural determination of Ba_{6} $\mathrm{Zn}_{7} \mathrm{~F}_{26}(r=1.16, n=7)(6)$ and $\mathrm{Ba}_{2} \mathrm{Ni}_{3} \mathrm{~F}_{10}(r$ $=1.5, n=9$) (7), we are now investigating phases corresponding to higher r values and we describe in this paper the hitherto un-

[^0]known compound $\mathrm{Ba}_{6} \mathrm{Cu}_{11} \mathrm{~F}_{34}(r=1.83, n=$ 11) in order to illustrate the structural recurrence in this family of fluorides.

Experimental

By cooling a melt corresponding to the composition $25 \mathrm{BaF}_{2}-75 \mathrm{CuF}_{2}$, shapeless single crystals of a new phase were isolated. These crystals correspond to a stoichiometry $6 \mathrm{BaF}_{2}-11 \mathrm{CuF}_{2}$ as determined from the resolution of the structure. Sev eral attempts of direct synthesis from the stoichiometric amounts at temperatures up to $600^{\circ} \mathrm{C}$ always led to a mixture of two phases: $\mathrm{Ba}_{6} \mathrm{Cu}_{7} \mathrm{~F}_{26}$ and $\mathrm{Ba}_{2} \mathrm{Cu}_{7} \mathrm{~F}_{18}$, even after quenching the tubes in cold water. The homologous $\mathrm{Ba}_{6} M_{11} \mathrm{~F}_{34}$ phases (with $M=$ Ni, Zn) could not be isolated. In Table I we 164

TABLE I
Calculated X-Ray Powder Pattern ($\mathrm{Cu} K \alpha$)

$\begin{array}{ll}h & k\end{array}$	0	$D_{\text {calc }}$	$I_{\text {calc }}$
010	4.68	9.4460	1
100	6.48	6.8271	1
0 1-1	6.59	6.7145	6
110	6.69	6.6131	4
1001	6.88	6.4259	4
111	6.99	6.3326	3
$0 \quad 0 \quad 2$	8.99	4.9310	15
1 1-1	9.01	4.9172	3
$0 \quad 20$	9.39	4.7230	3
$1-11$	9.50	4.6669	9
120	9.58	4.6279	2
102	9.67	4.5862	5
112	9.67	4.5849	1
121	9.72	4.5610	1
$\begin{array}{lll}0 & 1 & 2\end{array}$	10.01	4.4302	11
0 1-2	10.28	4.3146	2
$0 \begin{array}{lll}0 & 2\end{array}$	10.28	4.3142	3
0 2-1	10.55	4.2072	8
1-1-1	10.84	4.0973	5
1 2-1	11.40	3.8962	16
1-1 2	11.75	3.7815	7
122	11.76	3.7793	3
$\begin{array}{lll}2 & 1 & 1\end{array}$	11.93	3.7271	5
210	12.38	3.5936	58
1 0-2	12.39	3.5893	4
1 1-2	12.62	3.5264	8
$2{ }^{2}$	12.67	3.5122	7
022	12.84	3.4671	2
$2 \quad 21$	13.00	3.4235	8
200	13.04	3.4135	53
1-2 0	13.05	3.4124	9
2112	13.14	3.3883	12
0 2-2	13.26	3.3572	26
1-2 1	13.36	3.3329	2
103	13.47	3.3071	58
$0 \begin{array}{lll}0 & 0 & 3\end{array}$	13.55	3.2873	53
130	13.58	3.2803	4
131	13.63	3.2683	100
2002	13.87	3.2129	15
1-1-2	13.90	3.2068	33
222	14.08	3.1663	21
030	14.16	3.1487	19
$0 \begin{array}{lll}0 & 1 & 3\end{array}$	14.22	3.1362	27
1-2-1	14.26	3.1266	48
2 1-1	14.34	3.1092	9
1 2-2	14.50	3.0770	19
0 1-3	14.51	3.0744	14
$\begin{array}{lll}0 & 3 & 1\end{array}$	14.74	3.0279	34
2 0-1	14.88	2.9996	14
2-1 1	14.98	2.9807	49

TABLE I-Continued

h	k	l	θ	$D_{\text {calc }}$
1	3	-1	14.99	2.9774
0	3	-1	15.02	2.9719
1	-1	3	15.11	2.9551
1	-2	2	15.12	2.9523
1	3	2	15.13	2.9505
2	-1	0	15.25	2.9283
2	2	-1	15.35	2.9091
2	3	1	15.55	2.8739
2	1	3	15.66	2.8539
2	-1	2	16.06	2.7836
0	2	3	16.33	2.7398
2	0	3	16.33	2.7395
1	0	-3	16.54	2.7062
0	3	2	16.62	2.6935
1	1	-3	16.75	2.6723
0	2	-3	16.84	2.6583
0	3	-2	17.13	2.6158
2	1	-2	17.36	2.5818
1	-3	0	17.46	2.5674
2	3	-1	17.67	2.5375
1	-3	1	17.74	2.5274
1	3	3	17.75	2.5263

give the indexing of the pattern obtained from the program LAZY PULVERIX (8) using the atomic coordinates of the refinement.
No symmetry element appears on Laue patterns and the precession photographs show no systematic absences among the reflections: the space group is hence triclinic. Intensity data were collected on a CAD4 Nonius diffractometer. The crystallographic characteristics are reported in Table II. Corrections for Lorentz and polarization effects were applied and the refinement used the program SHELX (9) without any absorption correction owing to the lack of faces of the crystal. Atomic scattering factors for $\mathrm{Ba}^{2+}, \mathrm{Cu}^{2+}$, and F^{-}ions were taken from the International Tables for X-Ray Crystallography (10). Anomalous dispersion corrections were applied.

Structure Determination

The heavy atoms were localized using

TABLE II
Experimental Data for a $\mathrm{Ba}_{6} \mathrm{Cu}_{11} \mathrm{~F}_{34} \mathrm{Crystal}^{\text {rin }}$
Symmetry: triclinic ($P \overline{1}$)
Cell parameters: $a=7.490(1) \AA, b=10.031(2) \AA, c=10.271(2) \AA$,

$$
\alpha=82.98(2)^{\circ}, \beta=73.88(2)^{\circ}, \gamma=70.42(2)^{\circ}
$$

$$
V=698.1 \AA^{3}, Z=1
$$

Molar weight: 2168.99 g , Density: $5.15 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$
Crystal dimensions: shapeless (mean length: 0.020 mm)
Linear absorption coefficient: $167 \mathrm{~cm}^{-1}$ ($\mathrm{Mo}-K \alpha$)
Operating features:
Radiation: Mo ($\lambda=0.71069 \AA$) monochromator: graphite
Scan mode: ω, sweep: $0.9+0.4 \operatorname{tg}(2 \theta)^{\circ}$
Scanning speed: $(20.1166 / \mathrm{NV})^{\circ} \cdot \mathrm{mn}^{-1}$ with NV integer
Range measured: $2^{\circ}<\theta<35^{\circ}$

$$
-11 \leq h \leq 11,-16 \leq k \leq 16,0 \leq l \leq 16
$$

Reflections measured: total 3763
independent 3604
Refined parameters in $P \overline{1}$ group: 233
Secondary extinction factor: $2.0(2) \times 10^{-7}$
Residual peak height: $1.8 \mathrm{e}^{-/} \AA^{3}$

TABLE III
Atomic Coordinates and Anisotropic Thermal Parameters ${ }^{a}$

Atom	X / A	F / B	Z / C	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}	$B_{\text {eq }}$
Ba1	$0.7874(1)$	$0.3632(1)$	$0.6499(1)$	$137(2)$	$105(2)$	$108(2)$	$-30(2)$	$-33(2)$	$-37(2)$	0.79
Ba2	$0.3609(1)$	$0.0930(1)$	$0.7181(1)$	$147(2)$	$105(2)$	$148(2)$	$-45(2)$	$-54(2)$	$-28(2)$	0.90
Ba3	$0.3296(1)$	$0.3444(1)$	$0.0271(1)$	$169(2)$	$116(2)$	$110(2)$	$-34(2)$	$-25(2)$	$-65(2)$	0.89
Cu1	0	0		$129(6)$	$98(6)$	$110(6)$	$-41(5)$	$-19(5)$	$-49(5)$	0.75
Cu2	$0.1840(2)$	$0.4838(1)$	$0.7064(1)$	$108(4)$	$77(4)$	$136(5)$	$-10(3)$	$-43(3)$	$-33(3)$	0.72
Cu3	$0.2626(2)$	$0.2561(1)$	$0.3821(1)$	$129(4)$	$85(4)$	$106(4)$	$-32(3)$	$-29(3)$	$-29(4)$	0.73
Cu4	$0.6989(2)$	$0.2547(1)$	$0.2799(1)$	$119(4)$	$97(5)$	$123(5)$	$-41(3)$	$-44(3)$	$-30(3)$	0.75
Cu5	$0.8978(2)$	$0.2532(1)$	$0.9775(1)$	$114(4)$	$109(4)$	$101(4)$	$-32(3)$	$-38(3)$	$-32(4)$	0.72
Cu6	$0.8120(2)$	$0.9905(1)$	$0.8176(1)$	$123(4)$	$77(4)$	$120(4)$	$-31(3)$	$-35(3)$	$-32(3)$	0.71
F1	$0.5758(9)$	$0.6435(7)$	$0.2627(7)$	$152(25)$	$167(27)$	$266(31)$	$-10(23)$	$-82(22)$	$-44(22)$	1.33
F2	$0.4391(8)$	$0.8858(6)$	$0.1070(6)$	$159(24)$	$155(26)$	$186(26)$	$-56(20)$	$-52(20)$	$-38(20)$	1.14
F3	$0.0763(9)$	$0.3959(7)$	$0.2953(6)$	$152(25)$	$188(28)$	$222(28)$	$-33(22)$	$-68(21)$	$-29(22)$	1.31
F4	$0.0547(8)$	$0.8774(6)$	$0.7003(6)$	$160(25)$	$157(26)$	$181(27)$	$-48(21)$	$-60(21)$	$-4(21)$	1.19
F5	$0.8515(9)$	$0.8519(6)$	$0.9922(6)$	$161(25)$	$193(28)$	$215(28)$	$-19(22)$	$-102(22)$	$-34(22)$	1.28
F6	$0.3268(9)$	$0.6168(6)$	$0.0764(6)$	$184(25)$	$126(24)$	$172(26)$	$-20(20)$	$-83(20)$	$-38(20)$	1.07
F7	$0.1889(10)$	$0.3891(7)$	$0.5208(6)$	$241(9)$	$227(30)$	$188(27)$	$-131(23)$	$-33(23)$	$-75(25)$	1.46
F8	$0.7176(9)$	$0.1489(7)$	$0.1345(6)$	$228(29)$	$175(28)$	$207(28)$	$-79(22)$	$-62(23)$	$-60(23)$	1.36
F9	$0.1243(10)$	$0.6011(7)$	$0.9009(6)$	$308(33)$	$249(31)$	$156(27)$	$-118(23)$	$-89(24)$	$-67(26)$	1.55
F10	$0.1052(9)$	$0.1394(6)$	$0.5363(6)$	$201(25)$	$149(25)$	$180(26)$	$-32(20)$	$-53(20)$	$-105(22)$	1.11
F11	$0.4562(8)$	$0.3812(6)$	$0.2511(6)$	$139(24)$	$152(25)$	$182(26)$	$-28(20)$	$-62(20)$	$-31(20)$	1.08
F12	$0.0678(9)$	$0.3487(7)$	$0.8013(7)$	$181(27)$	$188(29)$	$304(34)$	$17(25)$	$18(24)$	$-116(24)$	1.60
F13	$0.0591(9)$	$0.8723(7)$	$0.1673(6)$	$213(27)$	$182(27)$	$173(26)$	$-58(21)$	$-59(21)$	$-109(22)$	1.18
F14	$0.3214(8)$	$0.1357(6)$	$0.2312(5)$	$183(25)$	$145(24)$	$123(24)$	$-27(18)$	$-33(19)$	$-69(20)$	1.00
F15	$0.2426(8)$	$0.8972(6)$	$0.3827(6)$	$140(24)$	$169(26)$	$200(27)$	$-79(21)$	$-36(20)$	$-40(21)$	1.16
F16	$0.4987(8)$	$0.1410(6)$	$0.4304(6)$	$154(24)$	$160(25)$	$168(25)$	$-1(20)$	$-64(20)$	$-57(20)$	1.07
F17	$0.7025(9)$	$0.3807(6)$	$0.4035(6)$	$222(26)$	$147(25)$	$162(25)$	$-43(20)$	$-47(20)$	$-104(21)$	1.12

[^1]

Fig. 1. "Sticks and balls" model of the basic unit in $\mathrm{Ba}_{6} \mathrm{Cu}_{11} \mathrm{~F}_{34}$. Numbers refer to the type of atom as given in Table III. Sticks with arrows indicate the two long distances of the CuF_{6} octahedra.
the "P1" method described by Abrahams (11). First, the refinement of the structure was performed in the noncentric $P 1$ space group. From a three-dimensional Patterson map, 4 barium positions were obtained and refined ($R=0.35$). Then successive Fourier maps revealed 2 other barium ions and 11 copper sites leading to the $\mathrm{Ba}_{6} \mathrm{Cu}_{11} \mathrm{~F}_{34}$ formulation. At this stage, an inversion center appeared relating 3 pairs of Ba^{2+} ions and 5 pairs of Cu^{2+}, the eleventh copper atom being located on the inversion center.

Fig. 2. Idealized perspective view of a four-membered satellite in $\mathrm{Ba}_{6} \mathrm{Cu}_{11} \mathrm{~F}_{34}$ (see text).

The corresponding atomic parameters were refined in the centrosymmetric space group with isotropic temperature factors to $R=0.14$. The F^{-}ions were located from a new Fourier synthesis and the refinement easily converged to $R=0.080$. When applying anisotropic thermal motion, the reliability factor fell to $R=0.054\left(R_{w}=0.052\right)$. The final refined positions and thermal parameters are listed in Table III. The list of the structure factors may be obtained on request to one of the authors (G.F.).

Discussion of the Structure

Two main features arise from the examination of the three-dimensional structure: (i) the original basic building unit; if compared to the corresponding units in $\mathrm{Ba}_{6} \mathrm{Zn}_{7}$ $\mathrm{F}_{26}(6)$ and $\mathrm{Ba}_{2} \mathrm{Ni}_{3} \mathrm{~F}_{10}$ (7), it forms an interesting step in the building of the rutile struc-

Fig. 3. Evolution of the shape of the satellites grafted on a rutile chain in $\mathrm{Ba}_{6} \mathrm{Zn}_{7} \mathrm{~F}_{26}$ (a), $\mathrm{Ba}_{2} \mathrm{Ni}_{3} \mathrm{~F}_{10}$ (b), and $\mathrm{Ba}_{6} \mathrm{Cu}_{11} \mathrm{~F}_{34}$ (c).

Fig. 4. Illustration of the connection of two (a), three (b), four (c), and five (d) idealized basic units to form the 3-D network.
ture. (ii) the connection of these units which leads to the appearance of new entities in the crystal chemistry of flucrides; these entities can be considered as defective NaCl blocks.

The basic unit (Fig. 1) is built up from 11 copper actahedra and is centered on (Cul) which occupies a center of symmetry. The central part of this unit consists of a linear trimeric cluster of 3 edge-sharing octahedra

Fig. 5. Two idealized perspective views of basic units linked by (F12) ions. Beside the trimers, appear perovskite-type squares (P) in (a) and defective NaCl-type blocks (D.N.) in (b).
（Cu6－Cu1－Cu6）almost parallel to the c axis of the cell．As far as we know，it is the first example of such an arrangement in flu－ oride chemistry．However the existence of similar trimers was previously reported in the structure of $\mathrm{Co}_{3}\left(\mathrm{AsO}_{4}\right)_{2}$（12）．Two com－ plex groups（hereafter called satellites）re－ lated to each other by the center of symme－ try are grafted on this trimer．Every satellite is made of 4 octahedra（Cu2－Cu3－ $\mathrm{Cu} 4-\mathrm{Cu} 5$ ）which lie in 2 quasi－orthogonal planes（respectively，perpendicular and parallel to the c axis），thus forming a ＂folded double L＂shape（Figs．I and 2）．In each satellite， 3 octahedra（Cu2－Cu4－Cu5） share edges around the common F9 fluo－ rine．The fourth octahedron（ Cu 3 ）is cor－ ner－shared to（ Cu 2 ）via the F3 ion．Each satellite is connected to the central trimer by 4 corners（F4－F5－F10－F14）．The struc－ tural evolution in the $\mathrm{Ba}_{6} M_{n} \mathrm{~F}_{12+2 n}$ family may be understood by considering the envi－ ronment of the rutile chains（Figs．3a－c）：
－in $\mathrm{Ba}_{6} \mathrm{Zn}_{7} \mathrm{~F}_{26}(n=7)$ ，single octahedra are connected to an infinite rutile chain；
－in $\mathrm{Ba}_{2} \mathrm{Ni}_{3} \mathrm{~F}_{10}(n=9)$ ， 1 supplementary octahedron connects 2 satellites of the pre－ vious structure，one by edge－sharing，the other by corner－sharing，in a plane normal to the rutile chain．This gives the L shape of the satellites within the $\mathrm{Ba}_{2} \mathrm{Ni}_{3} \mathrm{~F}_{10}$ structure；
－in $\mathrm{Ba}_{6} \mathrm{Cu}_{11} \mathrm{~F}_{34}(n=11)$ ，a fourth octahe－ dron is inserted in the＂L＂satellite to which it is linked by an edge．However，the reason why the infinite rutile chain breaks into a trimer in this structure is not yet un－ derstood．

To build the three－dimensional network， several basic units link corners in a rather complicated way（Figs．4a－d）．However， attention must be paid to the connection of two basic units via the（F12）fluorine atoms of their satellites；beside the linear trimers two types of blocks appear（Figs．5a and b）： perovskite－type squares and complex groups of six octahedra（Fig．5b）which can be described as defective NaCl blocks（Fig．

TABLE IV
Interatomic Distances（ \AA ）in Copper
Octahedra
$2 \times$ Cul－F15：1．910（6）
$2 \times$ Cul－F10： $1.935(7) \quad$（Cu1－F〉 $\quad 2.058(95)$
$2 \times$ Cu1－F04：2．329（6）
Cu2－F12：1．882（5）
Cu2－F01：1．910（5）
Cu2－F03：1．922（6）
Cu2－F17：1．926（6）
Cu2－F07：2．218（6）
Cu2－F09：2．302（6）
〈Cu2－F〉 2．027（83）
Cu4－F08：1．884（7）
Cu4－F17：1．909（7）
Cu4－F11：1．914（6）
Cu4－F04：1．925（6）
Cu4－F16：2．317（6）
Cu4－F09：2．560（8）
（Cu4－F）2．084（130）
Cu6－F02：1．881（6）
Cu6－F04：1．944（6）
Cu6－F13：1．969（9）
Cu6－F14：2．033（8）
Cu6－F05：2．155（5）
Cu6－F15：2．294（6）
（Cu6－F）2．046（68）Mean $\langle\mathrm{Cu}-\mathrm{F}\rangle 2.045$

6）．Once again，it is the first time that such an arrangement is encountered in the struc－ tures of $3 d$ transition metal fluorides．

As indicated in Table IV and Fig．1，ev－ ery copper octahedron presents four short and two long distances：this elongation is due to the Jahn－Teller effect．The mean $\mathrm{Cu}-\mathrm{F}$ distance（ $2.045 \AA$ ）is close to the sum of ionic radii（13）but in the Cu 4 octa－

Fig．6．NaCl－type block（left）and defective block as encountered in $\mathrm{Ba}_{6} \mathrm{Cu}_{11} \mathrm{~F}_{34}$（right）．

Fig. 7. (010) projections of barium polyhedra. The y coordinate is inside the circle. The number beside the circle indicates the type of atom corresponding to Table III.

TABLE V
Interatomic Distances (\AA) in Barium Polyhedra

Bal polyhedron Ba1-F01: 2.639 Ba1-F06: 2.713
Ba1-F11: 2.722
Ba1-F17: 2.748
Ba1-F10: 2.754
Ba1-F15: 2.763
Ba2 polyhedron Ba2-F16: 2.697 Ba2-F02: 2.705 Ba2-F12: 2.801 Ba2-F14: 2.817 Ba2-F08: 2.844 Ba2-F01: 2.875

Ba3 polyhedron Ba3-F06: 2.637 Ba3-F02: 2.646 Ba3-F14: 2.779 Ba3-F05: 2.791 Ba3-F11: 2.825 Ba3-F06: 2.831

Ba1-F07: 2.887
Ba1-F12: 2.899
Ba1-F13: 2.953
Ba1-F07: 3.016
Ba1-F03: 3.083
(Ba1-F03: 3.720)

Ba2-F16: 2.885
Ba2-F15: 2.892
Ba2-F10: 2.923
Ba2-F13: 2.952
Ba2-F05: 2.979
$\mathrm{Ba} 2-\mathrm{F} 07: 3.464$

Ba3-F01: 2.859
Ba3-F03: 2.871
Ba3-F09: 2.883
Ba3-F09: 3.140
Ba3-F08: 3.307
Ba3-F12: 3.416
(Ba3-F12: 3.708)
(Ba1-F) 2.834(67)
——_m
〈Ba3-F) 2.915(117)

Note. All estimated standard deviations less than $0.007 \AA$.
hedron, the Cu4-F9 distance is very long: $2.56 \AA$. However, a calculation of bond valence distributions indicates that the valence sum rule $(14,15)$ is well obeyed by all ions in the structure.
The Ba 2 cations adopt a 12 -fold coordination with an hcp type environment. Bal is $(11+1)$-fold coordinated (the distance $\mathrm{Ba} 1-\mathrm{F} 3$ is considerably larger than the average bond length). Its polyhedron derives from a fcc close-packed environment, like the Ba 3 one which is more distorted since its coordination number is $12+1$ (Fig. 7). The close-packed layers are stacked along the b axis. The mean $\mathrm{Ba}-\mathrm{F}$ distances (Table V) correspond to the sum of the ionic radii (13) and the packing fraction is 0.583 (0.611 when Cu^{2+} ions are included). The structural study of phases with higher values of r $=M / \mathrm{Ba}$ is presently in progress.

Acknowledgments

The authors are very indebted to Pr. J. Rouxel and Dr. P. Chevallier (LA 279-Université de Nantes) for the facilities they provided for the data collection.

References

1. M. Samouél, A. de Kozak, J. Renaudin, M. L.fri.anc, and G. Ferey, Rev. Chim. Min. 22, 64 (1985).
2. J. Renaudin, Y. Calage, M. Samouël, A. de Kozak, M. Leblanc, and G. Ferey, Rev. Chim. Min. 22, 74 (1985).
3. J. Renaudin, Y. Laligant, M. Samouël, A. de Kozak, and G. Ferey, J. Solid State Chem. 62, 158 (1986).
4. M. Samouël, Rev. Chim. Min. 8, 533 (1971) and references therein.
5. H. G. von Schnering, Z. Anorg. Allgem. Chem. 353, 1 (1967).
6. J. Renaudin, M. Samouël, M. Leblanc, A. de Kozak, and G. Ferey, J. Solid State Chem. 59, 103 (1985).
7. M. Leblanc, G. Ferey, and R. de Pape, J. Solid State Chem. 33, 317 (1980).
8. K. Yvon, W. Jeitschko, and E. Parthe, J. Appl. Crystallogr. 10, 73 (1977).
9. G. M. Sheldrick, "SHELX: A Program for Crystal Structure Determination," Cambridge (1976).
10. "International Tables for X-Ray Crystallography,' Vol. IV, Kynoch Press, Birmingham (1974).
11. S. C. Abrahams, J. Chem. Phys. 46(6), 2052 (1967).
12. N. Krishnamachari and C. Calvo, Canad. J. Chem. 48, 881 (1970).
13. R. D. Shannon, Acta Crystallogr. A 32, 751 (1976).
14. I. D. Brown and R. D. Shannon, Acta Crystallogr. A 29, 266 (1973).
15. I. D. Brown, Chem. Soc. Rev. 7, 353 (1978).

[^0]: ${ }^{1}$ For parts I to III, see Refs. (1-3).
 ${ }^{2}$ To whom correspondence should be addressed. 0022-4596/86 \$3.00

[^1]: ${ }^{a}$ The vibrational coefficients are relative to the expression $T=\exp \left(-2 \pi^{2}\left(h^{2} a^{* 2} U_{11}+k^{2} b^{* 2} U_{22}+l^{2} c^{* 2} U_{33}+\right.\right.$ $\left.2 k l b^{*} c^{*} U_{23}+2 h l a^{*} c^{*} U_{13}+2 h k a^{*} b^{*} U_{12}\right)$) with standard deviations in parentheses and $U_{i j}$ values $\times 10^{4}$.

